87 research outputs found

    Lateral entrainment in baroclinic currents II

    Get PDF
    The strong mesoscale velocity fluctuations (“eddies”) observed in the deep Gulf Stream region may be dynamically necessary to incorporate the Recirculation Gyres which account for the downstream increase in transport. The eddy-current interaction leading to entrainment is studied in a two layer quasi-geostrophic model with piecewise uniform potential vorticity. It is shown that the volume entrained by a bottom eddy of strength Γ*2 initially located near the edge of a bottom current depends mainly on the lateral shear s2 of this current, rather than on the much stronger shear of the upper layer. It is suggested that the “mean entrainment velocity” into an isopycnal layer of nearly uniform vertical thickness is proportional to (Γ*2s2)1/2, where Γ*2 (cm2/sec) is proportional to the integrated potential vorticity anomaly of the eddy

    Wave Extremes in the North East Atlantic from Ensemble Forecasts

    Full text link
    A method for estimating return values from ensembles of forecasts at advanced lead times is presented. Return values of significant wave height in the North-East Atlantic, the Norwegian Sea and the North Sea are computed from archived +240-h forecasts of the ECMWF ensemble prediction system (EPS) from 1999 to 2009. We make three assumptions: First, each forecast is representative of a six-hour interval and collectively the data set is then comparable to a time period of 226 years. Second, the model climate matches the observed distribution, which we confirm by comparing with buoy data. Third, the ensemble members are sufficiently uncorrelated to be considered independent realizations of the model climate. We find anomaly correlations of 0.20, but peak events (>P97) are entirely uncorrelated. By comparing return values from individual members with return values of subsamples of the data set we also find that the estimates follow the same distribution and appear unaffected by correlations in the ensemble. The annual mean and variance over the 11-year archived period exhibit no significant departures from stationarity compared with a recent reforecast, i.e., there is no spurious trend due to model upgrades. EPS yields significantly higher return values than ERA-40 and ERA-Interim and is in good agreement with the high-resolution hindcast NORA10, except in the lee of unresolved islands where EPS overestimates and in enclosed seas where it is biased low. Confidence intervals are half the width of those found for ERA-Interim due to the magnitude of the data set.Comment: 27 pp, 10 figures, J Climate (in press

    Lateral entrainment in baroclinic currents

    Get PDF
    A two layer shear flow model with piecewise uniform potential vorticity is used to show that circulation or free exchange of parcels in an isopycnal layer of uniform potential vorticity can be greatly inhibited by a strong potential vorticity front in another isopycnal layer. On the other hand, a net mass transfer across the edge of a shear flow can be produced by the initial presence of a strong mesoscale eddy. The entrainment resulting from this eddy-shear flow interaction is defined and quantified for an ensemble of initial realizations. It is suggested that dynamically similar entrainment processes, occurring in more realistic potential vorticity distributions, are important in coupling the recirculation gyres to the Gulf Stream, thereby providing the observed downstream increase in transport

    Joint Probabilities of Storm Surge, Significant Wave Height and River Discharge Components of Coastal Flooding Events. Utilising statistical dependence methodologies & techniques.

    Get PDF
    In this Report, the possibility of utilizing joint probability methods in coastal flood hazard component calculations is investigated, since flood risk is rarely a function of just one source variable but usually more of two or three variables such as river discharge, storm surge, wave etc. Joint probability values provide the likelihood of source variables taking high values simultaneously and resulting to a situation where flooding may occur. This report focuses on data preparation, parameter selection and methodology application. The source variable-pairs presented here, which include enough information for calculations, are: (i) surge & wave, (ii) surge & discharge and (iii) wave & discharge. The analysis is focused over 32 river ending (RIEN) points that have been selected to cover a variety of coastal environments along European riverine and estuary areas. In the absence of coincident long-term measurements, the methodology of simulating data observations by modelling was adapted resulting to a set of hindcasts for the three source variables (surge, wave height and discharge). Storm surge hindcasts were performed by utilising the hydrodynamic model Delft3D-Flow that was forced by wind and pressure terms from ECMWF ERA-Interim reanalysis. In a similar way, wave hindcasts were generated by utilizing the latest version of ECMWF ECWAM wave (stand-alone) model, forced by neutral wind terms from ERA-Interim. For the construction of river discharge hindcasts the LISFLOOD model – developed by the floods group of the Natural Hazards Project of the Joint Research Centre (JRC) – was employed. Validation of hindcasts was made over the RIEN point of river Rhine (NL) where coincident observations were available. Considering the physical driver complexity behind interactions among surge, wave height and discharge variables, hindcasts were found to perform quite well, not only simulating observation values over the common interval of interest, but also in resolving the right type and strength of both correlations and statistical dependencies. Results are presented by means of analytical tables and detailed maps referring to both correlation and dependence (chi) values being estimated over RIEN points. In particular, dependencies coming from such analytical tables can be used in an easy way to calculate the joint return period for any combined event by inserting chi in a simple formula containing the individual return periods of source variables. It is then straightforward to estimate the joint probability value as the inverse of the joint return period. Overall, the highest values of (strong / very strong) correlations and dependencies were found between surges and waves mainly over North Sea and English Channel with (such combined) events to take place on the same day (zero-lag mode). Moderate to well category dependencies were found for most sea areas, also on a zero-lag mode. In the case of surge and river discharge, moderate to well category values were found in most cases but not in a zero-lag mode as in surge & wave case. It became clear that in order to achieve such (relatively high) values, a considerable lag time interval of a few days was required with surge clearly leading discharge values. For the case of wave and river discharge, well to strong category values were found but once more mostly in non-zero lag mode indicating the necessity of a considerable lag time interval for dependence to reach such (well / strong) values with wave distinctly leading discharge values.JRC.G.2-Global security and crisis managemen

    Sea-state contributions to sea-level variability in the European Seas

    Get PDF
    The contribution of sea-state-induced processes to sea-level variability is investigated through ocean-wave coupled simulations. These experiments are performed with a high-resolution configuration of the Geestacht COAstal model SysTem (GCOAST), implemented in the Northeast Atlantic, the North Sea and the Baltic Sea which are considered as connected basins. The GCOAST system accounts for wave-ocean interactions and the ocean circulation relies on the NEMO (Nucleus for European Modelling of the Ocean) ocean model, while ocean-wave simulations are performed using the spectral wave model WAM. The objective is to demonstrate the contribution of wave-induced processes to sea level at different temporal and spatial scales of variability. When comparing the ocean-wave coupled experiment with in situ data, a significant reduction of the errors (up to 40% in the North Sea) is observed, compared with the reference. Spectral analysis shows that the reduction of the errors is mainly due to an improved representation of sea-level variability at temporal scales up to 12 h. Investigating the representation of sea-level extremes in the experiments, significant contributions (> 20%) due to wave-induced processes are observed both over continental shelf areas and in the Atlantic, associated with different patterns of variability. Sensitivity experiments to the impact of the different wave-induced processes show a major impact of wave-modified surface stress over the shelf areas in the North Sea and in the Baltic Sea. In the Atlantic, the signature of wave-induced processes is driven by the interaction of wave-modified momentum flux and turbulent mixing, and it shows its impact to the occurrence of mesoscale features of the ocean circulation. Wave-induced energy fluxes also have a role (10%) in the modulation of surge at the shelf break.publishedVersio

    The 2015 exceptional swell in the Southern Pacific: Generation, advection, forecast and implied extremes

    Get PDF
    A very severe storm in the Antarctic belt is analysed that sent a very large swell throughout the South-Pacific Ocean. The reasons for the storm were a deep depression passing over an anomalous warm sea area, with consequent increased intensity, more active wind input, gustiness, with also dynamical generation. Wind and wave model results are verified with scatterometer and altimeter data. We follow the swell evolution during the five days required to reach the Galapagos Islands and a buoy off the Peruvian coast. The first forerunners peaked at 0.032 Hz at these locations, well represented in the model thanks to a purposely extended frequency range used in the WAM model. A nonlinear combined analysis is carried out to estimate the overall maximum single wave heights that may have impinged on the Galapagos coasts. Single wave heights up to 6 m have been estimated. Once generated, the swell conditions at Galapagos and the buoy are perfectly anticipated. Including generation, useful forecasts extend till at least eight days before the event. The lack of any local communication is discussed. An analysis using ERA5 winds, but a respectively higher resolution long-term wave hindcast, shows that a similar, actually stronger, event happened in 2006. A simple, but sound method, based on physical principles and elementary geometry, is proposed to estimate, firsthand and after any time, the maximum height of a once generated swell. The results for the 2015 storm are correct within 5% of the model values

    Wind and Wave Extremes over the World Oceans from Very Large Ensembles

    Get PDF
    Global return values of marine wind speed and significant wave height are estimated from very large aggregates of archived ensemble forecasts at +240-h lead time. Long lead time ensures that the forecasts represent independent draws from the model climate. Compared with ERA-Interim, a reanalysis, the ensemble yields higher return estimates for both wind speed and significant wave height. Confidence intervals are much tighter due to the large size of the dataset. The period (9 yrs) is short enough to be considered stationary even with climate change. Furthermore, the ensemble is large enough for non-parametric 100-yr return estimates to be made from order statistics. These direct return estimates compare well with extreme value estimates outside areas with tropical cyclones. Like any method employing modeled fields, it is sensitive to tail biases in the numerical model, but we find that the biases are moderate outside areas with tropical cyclones.Comment: 28 pages, 16 figure
    corecore